
Unit 1 Embedded System

Introduction to Embedded System

An embedded system is an electronic system that has a

software and is embedded in computer hardware. It is programmable or non-

programmable depending on the application. An embedded system is defined as a

way of working, organizing, performing single or multiple tasks according to a set of

rules.

In an embedded system, all the units assemble and work together

according to the program. Examples of embedded systems include numerous products

such as microwave ovens, washing machine, printers, automobiles, cameras, etc. These

systems use microprocessors, microcontrollers as well as processors like DSPs.

The important characteristics of an embedded system are speed,

size, power, reliability, accuracy, adaptability. Therefore, when the embedded system

performs the operations at high speed, then it can be used for real -time applications. The

Size of the system and power consumption should be very low, then the system

can be easily adaptable for different situations.

An Embedded system is a combination of computer hardware

and software. As with any electronic system, this system requires a hardware platform

and that is built with a microprocessor or microcontroller. The Embedded system

hardware includes elements like user interface, Input/output interfaces, display and

memory, etc. Generally, an embedded system comprises power supply, processor,

memory, timers, serial communication ports and system application specific circuits.

2. Characteristics of an embedded system

The important characteristics of an embedded system are

Speed (bytes/sec) : should be high speed

Power (watts) : low power dissipation

Size and weight : as far as possible small in size and low weight

Accuracy (%error) : must be very accurate

Adaptability : high adaptability and

accessibility Reliability : must be reliable over

a long period of time

So an embedded system must perform the operations at a high speed so that it

can be readily used for real time applications and its power consumption must be very

low and the size of the system should be as far as possible small and the readings

must be accurate with minimum error. The system must be easily adaptable for

different situations.

3. Categories Of Embedded Systems:

Embedded systems can be classified into the following four categories based

on their functional and performance requirements

Stand – alone embedded system

Real – time embedded system – hard real – time system and soft real – time

system

Networked embedded system and

Mobile embedded system

Based on the performance of the microcontroller they are also classified into

Small scale embedded system

Medium scaled embedded system and

Large scaled embedded system

Stand – alone embedded system

A stand – alone embedded system works by itself. It is a self contained device

which does not require any host system like a computer. It takes either digital or analog

inputs from its input ports, calibrates, converts and process the data and outputs the

resulting data to its attached output device, which e i t h e r displays data or

controls or drives the attached devices. Temperature measurement system, video

game consoles, MP3 players, digital cameras and microwave ovens are the examples

for this category

Real – time embedded

system

An embedded system which gives the required output in a specified time or

which strictly follows the deadlines for completion of a task is known as a real time

embedded system

Soft real time embedded

system

A real time system in which the violation of time constraints will cause

only the degraded quality but the system can continue to operate is known as a soft real

time system. In soft real time system the design focus is to offer a guaranteed

bandwidth to each real – time task and to distribute the resources to the task. Examples

a microwave oven, washing machine, tv remote etc.,

Hard – real time embedded

System

A real time system in which the violation of time constraints will cause critical failure

and loss of life or property damage or catastrophe is known as hard – real time

system. These systems usually interact directly with physical hardware instead of

through a human being. The hardware and software of hard – real time systems must

allow a worst case execution (WCET) analysis is that guarantees the execution be

completed within a strict dead-line. The chip selection and RTOS selection became

important factors for hard- real time system design. Examples: deadline is a

missile control embedded system., delayed alarm during a gas leakage, car air bag

control system, a delay response in pace – makers, failure in RADAR functioning, etc.,

Networked embedded

systems

The networked embedded systems are related to a network with network interfaces to

access the resources. The connected network can be a local area network (LAN)

or a wide area network (WAN) or the internet. The connection can be either wired or

wireless.

The network embedded system is a fast growing area in an embedded system

application. The embedded web server is such a system where all embedded device

are connected to a web server and can be accessed and controlled by any web browser.

Examples; a home security system is an example of a LAN networked embedded system

where all sensors (e.g., monitor detectors, light sensors, or smoke sensors) are wired and

running on the TCP/IP protocol.

Mobile embedded

system

The portable embedded devices like mobile and cellular phones, digital cameras, MP3

players, PDA (Personal Digital Assistants) are the examples for mobile embedded

systems. The basic limitations of these devices is the limitation of memory and other

resources

Small scale embedded system: An embedded system supported by a single 8 –

16 bit microcontroller with on – chip RAM and ROM designed to perform simple task

in a small scale embedded system

Medium scale embedded system: An embedded system supported by 16-32

bit microcontroller / microprocessor with external RAM and ROM that can perform

more complex operations is a Medium scale embedded system

Large scale embedded system: An embedded system supported by 32 – 64 multiple

chips which can perform distributed jobs is considered as a large scale embedded system

Applications of Embedded system

Development phases of a microcontroller based system

UNIT-II EMBEDDED SYSTEM INTERFACING

Serial Communication

Embedded electronics is all about interlinking circuits (processors or other integrated

circuits) to create a symbiotic system. In order for those individual circuits to swap their

information, they must share a common communication protocol. Hundreds of

communication protocols have been defined to achieve this data exchange, and, in general,

each can be separated into one of two categories: parallel or serial.

Parallel vs. Serial

Parallel interfaces transfer multiple bits at the same time. They usually require buses of

data - transmitting across eight, sixteen, or more wires. Data is transferred in huge, crashing

waves of 1’s and 0’s.

An 8-bit data bus, controlled by a clock, transmitting a byte every clock pulse. 9 wires are

used.Serial interfaces stream their data, one single bit at a time. These interfaces can

operate on as little as one wire, usually never more than four.

https://cdn.sparkfun.com/assets/c/a/c/3/a/50e1cca6ce395fbc27000000.png

Example of a serial interface, transmitting one bit every clock pulse. Just 2 wires required!

Think of the two interfaces as a stream of cars: a parallel interface would be the 8+ lane

mega-highway, while a serial interface is more like a two-lane rural country road. Over a

set amount of time, the mega-highway potentially gets more people to their destinations,

but that rural two-laner serves its purpose and costs a fraction of the funds to build.

Parallel communication certainly has its benefits. It’s fast, straightforward, and relatively

easy to implement. But it requires many more input/output (I/O) lines. If you’ve ever had to

move a project from a basic Arduino Uno to a Mega, you know that the I/O lines on a

microprocessor can be precious and few. So, we often opt for serial communication,

sacrificing potential speed for pin real estate.

Asynchronous Serial

Over the years, dozens of serial protocols have been crafted to meet particular needs of

embedded systems. USB (universal serial bus), and Ethernet, are a couple of the more well-

known computing serial interfaces. Other very common serial interfaces include SPI, I
2
C,

and the serial standard we’re here to talk about today. Each of these serial interfaces can be

sorted into one of two groups: synchronous or asynchronous.

A synchronous serial interface always pairs its data line(s) with a clock signal, so all

devices on a synchronous serial bus share a common clock. This makes for a more

straightforward, often faster serial transfer, but it also requires at least one extra wire

between communicating devices. Examples of synchronous interfaces include SPI, and I
2
C.

Asynchronous means that data is transferred without support from an external clock

signal. This transmission method is perfect for minimizing the required wires and I/O pins,

but it does mean we need to put some extra effort into reliably transferring and receiving

data. The serial protocol we’ll be discussing in this tutorial is the most common form of

asynchronous transfers. It is so common, in fact, that when most folks say “serial” they’re

talking about this protocol (something you’ll probably notice throughout this tutorial).

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/11061
https://cdn.sparkfun.com/assets/e/5/4/2/a/50e1ccf1ce395f962b000000.png

 Synchronization bits,

 Parity bits,

 and Baud rate.

Synchronization bits

The synchronization bits are two or three special bits transferred with each chunk of data.

They are the start bit and the stop bit(s). True to their name, these bits mark the beginning

and end of a packet. There’s always only one start bit, but the number of stop bits is

configurable to either one or two (though it’s commonly left at one).

The start bit is always indicated by an idle data line going from 1 to 0, while the stop bit(s)

will transition back to the idle state by holding the line at 1.

Parity bits

Wiring and Hardware

A serial bus consists of just two wires - one for sending data and another for receiving. As

such, serial devices should have two serial pins: the receiver, RX, and the transmitter, TX.

It’s important to note that those RX and TX labels are with respect to the device itself. So

the RX from one device should go to the TX of the other, and vice-versa. It’s weird if

you’re used to hooking up VCC to VCC, GND to GND, MOSI to MOSI, etc., but it makes

sense if you think about it. The transmitter should be talking to the receiver, not to another

transmitter.

A serial interface where both devices may send and receive data is either full-

duplex or half-duplex. Full-duplex means both devices can send and receive

simultaneously. Half-duplex communication means serial devices must take turns sending

and receiving.

https://cdn.sparkfun.com/assets/2/5/c/4/5/50e1ce8bce395fb62b000000.png

Some serial busses might get away with just a single connection between a sending and

receiving device. For example, our Serial Enabled LCDs are all ears and don’t really have

any data to relay back to the controlling device. This is what’s known as simplex serial

communication. All you need is a single wire from the master device’s TX to the listener’s

RX line.

Hardware Implementation

We’ve covered asynchronous serial from a conceptual side. We know which wires we need.

But how is serial communication actually implemented at a signal level? In a variety ways,

actually. There are all sorts of standards for serial signaling. Let’s look at a couple of the

more popular hardware implementations of serial: logic-level (TTL) and RS-232.

When microcontrollers and other low-level ICs communicate serially they usually do so at

a TTL (transistor-transistor logic) level. TTL serial signals exist between a

microcontroller’s voltage supply range - usually 0V to 3.3V or 5V. A signal at the VCC

level (3.3V, 5V, etc.) indicates either an idle line, a bit of value 1, or a stop bit. A 0V

(GND) signal represents either a start bit or a data bit of value 0.

RS-232, which can be found on some of the more ancient computers and peripherals, is like

TTL serial flipped on its head. RS-232 signals usually range between -13V and 13V,

though the spec allows for anything from +/- 3V to +/- 25V. On these signals a low voltage

(-5V, -13V, etc.) indicates the idle line, a stop bit, or a data bit of value 1. A high RS-232

signal means either a start bit, or a 0-value data bit. That’s kind of the opposite of TTL

serial.

Between the two serial signal standards, TTL is much easier to implement into embedded

circuits. However the low voltage levels are more susceptible to losses across long

https://www.sparkfun.com/products/10097
https://cdn.sparkfun.com/assets/1/8/d/c/1/51142c09ce395f0e7e000002.png
https://cdn.sparkfun.com/assets/b/d/a/1/3/51142cacce395f877e000006.png

transmission lines. RS-232, or more complex standards like RS-485, are better suited to

long range serial transmissions.

When you’re connecting two serial devices together, it’s important to make sure their signal

voltages match up. You can’t directly interface a TTL serial device with an RS-232 bus.

You’ll have to shift those signals!

Super-simplified UART interface. Parallel on one end, serial on the other.

Internal UART block diagram (courtesy of the Exar ST16C550 datasheet)

Wireless Devices

Wireless technology describes electronic devices that communicate without cords using

radio frequency signals. Wireless technology is used in a variety of modern device to

provide convenience and greater mobility, and wireless devices play an important role in

voice and Internet communications.

Wireless Router

A wireless router is a device that accepts an incoming Internet connection and sends data as

RF signals to other wireless devices that are near the router. Wireless routers are used to

connect wireless-enabled computers and other devices to the Internet. A network set up

with a wireless router is sometimes called a wireless local area network (WLAN.). Many

routers have built-in security features such as firewalls which help protect devices

connected to the router against malicious data, such as computer viruses.

http://www.sparkfun.com/tutorials/215
https://cdn.sparkfun.com/assets/d/1/f/5/b/50e1cf30ce395fb227000000.png

Wireless Adapters

Wireless adapters are hardware devices installed inside computers that enable wireless

connectivity. If a computer does not have a wireless adapter, it will not be able to connect

to a router in order to access the Internet. Some computers have wireless adapters built

directly into the motherboard while it is also possible to install stand-alone wireless

adapters to add wireless capability to a computer that did not come with an adapter built in.

Wireless Repeater

A wireless repeater is a wireless networking device that is used to extend the range of a

router. A repeater receives wireless signals and then re-emits them with increased strength.

By placing a repeater between a router and the computer connected to the router, signal

strength can be boosted, resulting in faster connection speeds.

Wireless Phones

Cellular and cordless phones are two more examples of device that make use of wireless

signals. Cordless phones have a limited range, but cell phones typically have a much larger

range than local wireless networks, since cell phone providers use large telecommunication

towers to provide cell phone coverage.Satellite phones make use of signals from satellites

to communicate, similar to Global Positioning System (GSP) devices.

Introduction to Counter/Timers

Counter/timer hardware is a crucial component of most embedded systems. In some cases a

timer is needed to measure elapsed time; in others we want to count or time some external

events. Here's a primer on the hardware.

Counter/timer hardware is a crucial component of most embedded systems. In some cases,

a timer measures elapsed time (counting processor clock ticks). In others, we want to count

or time external events. The names counter and timer can be used interchangeably when

talking about the hardware. The difference in terminology has more to do with how the

hardware is used in a given application.

Figure A simple counter/timer

Figure 1 shows a simple timer similiar to those often included on-chip within a

microcontroller. You could build something similar from a couple of 74HC161 counters or

a programmable logic device. The timer shown consists of a loadable 8-bit count register,

an input clock signal, and an output signal. Software loads the count register with an initial

value between 0x00 and 0xFF. Each subsequent transition of the input clock signal

increments that value.

When the 8-bit count overflows, the output signal is asserted. The output signal may

thereby trigger an interrupt at the processor or set a bit that the processor can read. To

restart the timer, software reloads the count register with the same or a different initial

value.

If a counter is an up counter, it counts up from the initial value toward 0xFF. A down

counter counts down, toward 0x00.

A typical counter will have some means to start the counter running once it is loaded,

usually by setting a bit in a control register. This is not shown in the figure. A real counter

would generally also provide a way for the processor to read the current value of the count

register at any time, over the data bus.

Semi-automatic

A timer with automatic reload capability will have a latch register to hold the count written

by the processor. When the processor writes to the latch, the count register is written as

well. When the timer later overflows, it first generates an output signal. Then, it

automatically reloads the contents of the latch into the count register. Since the latch still

holds the value written by the processor, the counter will begin counting again from the

same initial value.

Such a timer will produce a regular output with the same accuracy as the input clock. This

output could be used to generate a periodic interrupt like a real-time operating system

(RTOS) timer tick, provide a baud rate clock to a UART, or drive any device that requires a

regular pulse.

A variation of this feature found in some timers uses the value written by the processor as

the endpoint rather than the initial count. In this case, the processor writes into a terminal

count register that is constantly compared with the value in the count register. The count

register is always reset to zero and counts up. When it equals the value in the terminal count

register, the output signal is asserted. Then the count register is reset to zero and the process

repeats. The terminal count remains the same. The overall effect is the same as an overflow

counter. A periodic signal of a pre-determined length will then be produced.

If a timer supports automatic reloading, it will often make this a software-selectable feature.

To distinguish between a count that will not repeat automatically and one that will, the

hardware is said to be in one of two modes: one-shot or periodic. The mode is generally

controlled by a field in the timer's control register.

Input capture

Figure: An input capture timer

An input capture timer, like the one shown in Figure 2, has a latch connected to the timer's

count register. The timer is run at a constant clock rate (usually a derivative of the processor

clock), so that the count registers is constantly incrementing (or decrementing, for a down

counter). An external signal latches the value of the free-running timer into the processor-

visible register and generates an output signal (typically an interrupt).

One use for an input capture timer is to measure the time between the leading edge of two

pulses. By reading the value in the latch and comparing it with a previous reading, the

software can determine how many clock cycles elapsed. In some cases, the timer's count

register might be automatically reset just after its value is latched. If so, the software can

directly interpret the value it reads as the number of clock ticks elapsed. An input capture

pin can usually be programmed to capture on either the rising or falling edge of the input

signal.

Options abound

Many timers provide a means to prescale the input clock signal. For example, the 8-bit

timer in Atmel's AT90S8515 microcontroller can be incremented with every processor

clock cycle, every 8th, every 64th, every 256th, or every 1,024th. Selecting a less frequent

update cycle is called prescaling the input clock. Similarly, each increment could occur on

either the rising or falling edge of some other signal entirely. In the Atmel part, these

features are software-selectable.

Some timers can directly control a general-purpose I/O pin. When an overflow occurs, the

pin can be automatically set to 1, reset to 0, or toggled. This can be useful in, for example,

generating a PWM signal.1 Using two different initial or terminal count values and a one-

shot timer that toggles the I/O pin on overflow, the pin could be set to 1 for a desired

amount of time, then 0 for a different amount of time, then 1 again, and so on. The period

of the PWM signal would be a function of the sum of the two timer lengths. The duty cycle

would then be the length of time that the pin is set to 1 as a percentage of the period.

Introduction to Watchdog Timers

For those embedded systems that can't be constantly watched by a human, watchdog timers

may be the solution.

Most embedded systems need to be self-reliant. It's not usually possible to wait for

someone to reboot them if the software hangs. Some embedded designs, such as space

probes, are simply not accessible to human operators. If their software ever hangs, such

systems are permanently disabled. In other cases, the speed with which a human operator

might reset the system would be too slow to meet the uptime requirements of the product.

A watchdog timer is a piece of hardware that can be used to automatically detect software

anomalies and reset the processor if any occur. Generally speaking, a watchdog timer is

based on a counter that counts down from some initial value to zero. The embedded

software selects the counter's initial value and periodically restarts it. If the counter ever

reaches zero before the software restarts it, the software is presumed to be malfunctioning

and the processor's reset signal is asserted. The processor (and the embedded software it's

running) will be restarted as if a human operator had cycled the power.

Figure 1 shows a typical arrangement. As shown, the watchdog timer is a chip external to

the processor. However, it could also be included within the same chip as the CPU. This is

done in many microcontrollers. In either case, the output from the watchdog timer is tied

directly to the processor's reset signal.

Kicking the dog

The process of restarting the watchdog timer's counter is sometimes called "kicking the

dog." The appropriate visual metaphor is that of a man being attacked by a vicious dog. If

he keeps kicking the dog, it can't ever bite him. But he must keep kicking the dog at regular

intervals to avoid a bite. Similarly, the software must restart the watchdog timer at a regular

rate, or risk being restarted.

A simple example is shown in Listing 1. Here we have a single infinite loop that controls

the entire behavior of the system. This software architecture is common in many embedded

systems with low-end processors and behaviors based on a single operational frequency.

The hardware implementation of this watchdog allows the counter value to be set via a

memory-mapped register.

Listing 1: Kicking the dog

uint16 volatile * pWatchdog =

 (uint16 volatile *) 0xFF0000;

main(void)

{

 hwinit();

 for (;;)

 {

 *pWatchdog = 10000;

 read_sensors();

 control_motor();

 display_status();

 }

}

Suppose that the loop must execute at least once every five milliseconds. (Say the motor

must be fed new control parameters at least that often.) If the watchdog timer's counter is

initialized to a value that corresponds to five milliseconds of elapsed time, say 10,000, and

the software has no bugs, the watchdog timer will never expire; the software will always

restart the counter before it reaches zero.

Software anomalies

A watchdog timer can get a system out of a lot of dangerous situations. However, if it is to

be effective, resetting the watchdog timer must be considered within the overall software

design. Designers must know what kinds of things could go wrong with their software, and

ensure that the watchdog timer will detect them, if any occur.

Systems hang for any number of reasons. A logical fallacy resulting in the execution of an

infinite loop is the simplest. Suppose such a condition occurred within the read_sensors()

call in Listing 1. None of the other software (except ISRs, if interrupts are still enabled)

would get a chance to run again.

Another possibility is that an unusual number of interrupts arrives during one pass of the

loop. Any extra time spent in ISRs is time not spent executing the main loop. A dangerous

delay in feeding the motor new control instructions could result.

When multitasking kernels are used, deadlocks can occur. For example, a group of tasks

might get stuck waiting on each other and some external signal that one of them needs,

leaving the whole set of tasks hung indefinitely.

If such faults are transient, the system may function perfectly for some length of time after

each watchdog-induced reset. However, failed hardware could lead to a system that

constantly resets. For this reason it may be wise to count the number of watchdog-induced

resets, and give up trying after some fixed number of failures.

Karate lessons

An actual watchdog implementation would usually have an interface to the software that is

more complex than the one in Listing 1. When the set of instructions required to reset the

watchdog is very simple, it's possible that buggy software could perform this action by

accident. Consider a bug that causes the value 10,000 to be written to every location in

memory, over and over again. This code would regularly restart the watchdog counter, and

the watchdog might never bite. To prevent this, many watchdog implementations require

that a complex sequence of two or more consecutive writes be used to restart the watchdog

timer.

If the watchdog is built into your microcontroller, it may not be enabled automatically when

the device resets. You must be sure to enable it during hardware initialization. To provide

protection against a bug accidentally disabling the watchdog, the hardware design usually

makes it impossible to disable the watchdog timer once it has been enabled.

If your software can do a complete loop faster than the watchdog period, the structure in

Listing 1 may work fine for you. It gets more challenging if some part of your software

takes a long time to complete. Say you have a loop that waits for an element to heat to a

certain temperature before returning. Many watchdog timers have a maximum period of

around two seconds. If you are going to delay for more than that length of time, you may

have to kick the dog from within the waiting loop. If there are many such places in your

software, control of the watchdog can become problematic.

System initialization is a part of the code that often takes longer than the watchdog timer's

maximum period. Perhaps a memory test or ROM to RAM data transfer slows this down.

For this reason, some watchdogs can wait longer for their first kick than they do for

subsequent kicks.

As threads of control are added to software (in the form of ISRs and software tasks), it

becomes ineffective to have just one place in the code where the watchdog is kicked.

Choosing a proper kick interval is also an important issue, one that can only be addressed in

a system-specific manner. These and other issues of greater complexity are discussed in the

references listed at the end of this article.

Dog days

A watchdog timer is useful tools in helping your system recover from transient failures.

Since it is so common to find watchdogs built into modern microcontrollers, the technique

is effectively free. If you are working on a mission-critical system, then either common

sense or a regulatory body will insist that you use a watchdog. It's always a good idea to

make your systems more self-reliant.

I
2
C

The Inter-integrated Circuit (I
2
C) Protocol is a protocol intended to allow multiple “slave”

digital integrated circuits (“chips”) to communicate with one or more “master” chips. Like

the Serial Peripheral Interface (SPI), it is only intended for short distance communications

within a single device. Like Asynchronous Serial Interfaces (such as RS-232 or UARTs), it

only requires two signal wires to exchange information.

1. Enter I
2
C - The Best of Both Worlds!

ach I
2
C bus consists of two signals: SCL and SDA. SCL is the clock signal, and SDA is the

data signal. The clock signal is always generated by the current bus master; some slave

devices may force the clock low at times to delay the master sending more data (or to

require more time to prepare data before the master attempts to clock it out). This is called

“clock stretching” and is described on the protocol page.

Unlike UART or SPI connections, the I
2
C bus drivers are “open drain”, meaning that they

can pull the corresponding signal line low, but cannot drive it high. Thus, there can be no

bus contention where one device is trying to drive the line high while another tries to pull it

low, eliminating the potential for damage to the drivers or excessive power dissipation in

the system. Each signal line has a pull-up resistor on it, to restore the signal to high when

no device is asserting it low.

Notice the two pull-up resistors on the two communication lines.

http://en.wikipedia.org/wiki/Open_collector
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://cdn.sparkfun.com/assets/3/d/1/b/6/51adfda8ce395f151b000000.png
https://cdn.sparkfun.com/assets/5/f/5/a/1/51adff65ce395ff71a000000.png

Resistor selection varies with devices on the bus, but a good rule of thumb is to start with

4.7k and adjust down if necessary. I
2
C is a fairly robust protocol, and can be used with

short runs of wire (2-3m). For long runs, or systems with lots of devices, smaller resistors

are better.

CAN Logger is a control unit which allows to filter and to memorize all CAN frames of the

bus on which is connected on. Beside the system can be directly interfaced to PC through

USB or RS232 interfaces.

The unit is easy to use and to configure, thanks to the provided software for Windows XP,

Vista and 7.

 CAN Logger can be used immediately with any CAN BUS, because it is completely

configurable.

 Customizable parameters are:

 - High-speed / Low-speed.

 - Baudrate.

 - Address.

CAN Logger is available in two versions, CAN Logger-Flash and CAN Logger-SD:

CAN Logger-Flash can record up to 9,000 can messages on a on-board flash memory

readable with the provided software.

CAN Logger-SD allows to record messages form CAN bus directly on a Micro-SD card:

that SD card can be read from any card reader, beside there is the possibility to connect the

logger directly to a PC using the provided software.

USB,

short for Universal Serial Bus, is an industry standard that defines cables, connectors

and communications protocols for connection, communication, and power supply

between computers and devices.
[3]

USB was designed to standardize the connection of computer peripherals (including

keyboards, pointing devices, digital cameras, printers, portable media players, disk

drives and network adapters) to personal computers, both to communicate and to

supply electric power. It has largely replaced a variety of earlier interfaces, such as serial

portsand parallel ports, as well as separate power chargers for portable devices – and has

become commonplace on a wide range of devices.
[4]

In general, there are three basic formats of USB connectors: the default or standard format

intended for desktop or portable equipment (for example, on USB flash drives),

https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/USB#cite_note-4
https://en.wikipedia.org/wiki/Computer_peripheral
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Portable_media_player
https://en.wikipedia.org/wiki/Disk_drive
https://en.wikipedia.org/wiki/Disk_drive
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Electric_power
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Parallel_port
https://en.wikipedia.org/wiki/Power_charger
https://en.wikipedia.org/wiki/USB#cite_note-5
https://en.wikipedia.org/wiki/Flash_drives

the miniintended for mobile equipment (now deprecated except the Mini-B, which is used

on many cameras), and the thinner micro size, for low-profile mobile equipment (most

modern mobile phones). Also, there are 5 modes of USB data transfer, in order of

increasing bandwidth: Low Speed (from 1.0), Full Speed (from 1.0), High Speed (from

2.0), SuperSpeed(from 3.0), and SuperSpeed+ (from 3.1); modes have differing hardware

and cabling requirements. USB devices have some choice of implemented modes, and USB

version is not a reliable statement of implemented modes. Modes are identified by their

names and icons, and the specifications suggests that plugs and receptacles be colour-coded

(SuperSpeed is identified by blue).

Unlike other data buses (e.g., Ethernet, HDMI), USB connections are directed, with both

upstream and downstream ports emanating from a single host. This applies to electrical

power, with only downstream facing ports providing power; this topology was chosen to

easily prevent electrical overloads and damaged equipment. Thus, USB cables have

different ends: A and B, with different physical connectors for each. Therefore, in general,

each different format requires four different connectors: a plug and receptacle for each of

the A and B ends. USB cables have the plugs, and the corresponding receptacles are on the

computers or electronic devices. In common practice, the A end is usually the standard

format, and the B side varies over standard, mini, and micro. The mini and micro formats

also provide for USB On-The-Go with a hermaphroditic AB receptacle, which accepts

either an A or a B plug. On-the-Go allows USB between peers without discarding the

directed topology by choosing the host at connection time; it also allows one receptacle to

perform double duty in space-constrained applications.

There are cables with A plugs on both ends, which may be valid if the cable includes, for

example, a USB host-to-host transfer device with 2 ports, but they could also be non-

standard and erroneous and should be used carefully.
[5]

The micro format is the most durable from the point of view of designed insertion lifetime.

The standard and mini connectors have a design lifetime of 1,500 insertion-removal

cycles,
[6]

 the improved Mini-B connectors increased this to 5,000. The micro connectors

were designed with frequent charging of portable devices in mind, so have a design life of

https://en.wikipedia.org/wiki/SuperSpeed
https://en.wikipedia.org/wiki/USB_On-The-Go
https://en.wikipedia.org/wiki/USB#cite_note-cablestogo-6
https://en.wikipedia.org/wiki/USB#cite_note-CabConn20-7
https://en.wikipedia.org/wiki/File:USB_Icon.svg
https://en.wikipedia.org/wiki/File:Usb_head_Cable.jpg

10,000 cycles
[6]

 and also place the flexible contacts, which wear out sooner, on the easily

replaced cable, while the more durable rigid contacts are located in the receptacles.

Likewise, the springy component of the retention mechanism, parts that provide required

gripping force, were also moved into plugs on the cable side.
[7]

https://en.wikipedia.org/wiki/USB#cite_note-CabConn20-7
https://en.wikipedia.org/wiki/USB#cite_note-stackexchange-miniusb-8

UNIT-3 ARM PROCESSOR-7

The ARM architecture has been designed to allow very small, yet high-performance

implementations. The architectural simplicity of ARM processors leads to very small

implementations, and small implementations allow devices with very low power

consumption.

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates

These typical RISC architecture features:

A large uniform register file

A load/store architecture, where data-processing operations only operate on Register

contents, not directly on memory contents Simple addressing modes, with all load/store

addresses being determined from register contents and instruction fields only

Uniform and fixed-length instruction fields, to simplify instruction

Decode.

In addition, the ARM architecture gives you:

Control over both Arithmetic Logic Unit (ALU) and shifter in every data-

Processing instruction to maximize the use of an ALU and a shifter Load and Store multiple

to maximize data throughput.

These enhancements to a basic RISC architecture allow ARM processors to

Achieve a good balance of high performance, low code size and low power

Consumption.

ARM Block diagram

The main parts of the ARM processor are:

 1. Register file: The processor has a total of 37 registers made up of

 31 general 32 bit registers and 6 status registers

 2. Booth Multiplier

 3. Barrel shifter

 4. Arithmetic Logic Unit (ALU)

 5. Control Unit.

Microprocessor-based system on a chip

Constants in Assembly for Arm Architecture

Arm is a 32-bit CPU architecture where every instruction is 32 bits long. Any constants

which are part of an instruction must be encoded within the 32 bits of the given instruction

and this naturally limits the range of constants that can be represented in one instruction.

This post will show you how we can deal with these limitations and how the latest revision

of the Arm architecture (Armv7) provides a simple and efficient solution

Most arithmetic and logical Arm instructions accept 3 parameters:

 The destination: always a register.

 Operand 1: always a register.

 Operand 2: a register, an immediate constant value or a shifted register. We'll cover

shifted registers in a future post. For now, we're only interested in the constants.

Examples of such instructions are:

add r0, r1, r2 @ r0 = r1 + r2

sub r0, r1, #3 @ r0 = r1 - 3

An Operand 2 immediate must obey the following rule to fit in the instruction: an 8-bit

value rotated right by an even number of bits between 0 and 30 (inclusive). This allows for

constants such as 0xFF (0xFF rotated right by 0), 0xFF00 (0xFF rotated right by 24) or

0xF000000F (0xFF rotated right by 4).

https://en.wikipedia.org/wiki/File:ARMSoCBlockDiagram.svg

Operand 2 immediates are also valid immediates for mov instructions, making it possible to

move constant values into registers without performing any other computation:

 mov r0, #0xFF0 @ r0 = 0xFF0

In software - especially in languages like C - constants tend to be small. When they are not

small they tend to be bit masks. Operand 2 immediates provide a reasonable compromise

between constant coverage and encoding space; most common constants can be encoded

directly.

Loading a Constant from the Instruction Stream: Armv7 way

As mentioned earlier, there are other ways to load a constant. In the latest version of the

Arm architecture, Armv7, two new instructions were introduced to improve the situation:

 movw, or move wide, will move a 16-bit constant into a register, implicitly zeroing the

top 16 bits of the target register.

 movt, or move top, will move a 16-bit constant into the top half of a given register

without altering the bottom 16 bits. Now moving an arbitrary 32-bit constant is as simple

as this:

 movw r0, #0x5678 @ r0 = 0x00005678

 movt r0, #0x1234 @ r0 = (r0 & 0x0000FFFF) | 0x12340000 (=0x12345678)

Note that the order matters since movw will zero the upper 16 bits. Here again the GNU

assembler provides some syntactic sugar: the prefixes :upper16: and :lower16: allow you to

extract the corresponding half from a 32-bit constant:

 .equ label, 0x12345678

 movw r0, #:lower16:label

 movt r0, #:upper16:label

While this approach takes two instructions, it does not require any extra space to store the

constant so both the movw/movt method and the ldr method will end up using the same

amount of memory. Memory bandwidth is precious in and the movw/movt approach avoids

an extra read on the data side, not to mention the read could have missed the cache.

If you know you can use it, movw/movt is the recommended way to load a 32-bit constant.

However, if it is possible to encode the 32-bit constant using an 8-bit immediate and if

necessary rotated right, try to use Operand 2 directly, and avoid the need to use an extra

register.

The Instruction Set

We now know what the ARM provides by way of memory and registers, and the sort of

instructions to manipulate them. This chapter describes those instructions in great detail.

As explained in the previous chapter, all ARM instructions are 32 bits long. Here is a

typical one:

10101011100101010010100111101011

Fortunately, we don't have to write ARM programs using such codes. Instead we use

assembly language. We saw at the end of Chapter One a few typical ARM mnemonics.

Usually, mnemonics are followed by one or more operands which are used to completely

describe the instruction.

An example mnemonic is ADD, for 'add two registers'. This alone doesn't tell the assembler

which registers to add and where to put the result. If the left and right hand side of the

addition are R1 and R2 respectively, and the result is to go in R0, the operand part would be

written R0,R1,R2. Thus the complete add instruction, in assembler format, would be:

ADD R0, R1, R2 ;R0 = R1 + R2

Most ARM mnemonics consist of three letters, e.g. SUB, MOV, STR, STM. Certain

'optional extras' may be added to slightly alter the affect of the instruction, leading to

mnemonics such as ADCNES and SWINE.

The mnemonics and operand formats for all of the ARM's instructions are described in

detail in the sections below. At this stage, we don't explain how to create programs,

assemble and run them. There are two main ways of assembling ARM programs - using the

assembler built-in to BBC BASIC, or using a dedicated assembler. The former method is

more convenient for testing short programs, the latter for developing large scale projects.

Chapter Four covers the use of the BASIC assembler.

3.1 Condition codes

The property of conditional execution is common to all ARM instructions, so its

representation in assembler is described before the syntax of the actual instructions.

As mentioned in chapter two, there are four bits of condition encoded into an instruction

word. This allows sixteen possible conditions. If the condition for the current instruction is

true, the execution goes ahead. If the condition does not hold, the instruction is ignored and

the next one executed.

The result flags are altered mainly by the data manipulation instructions. These instructions

only affect the flags if you explicitly tell them to. For example, a MOV instruction which

copies the contents of one register to another. No flags are affected. However,

the MOVS (move with Set) instruction additionally causes the result flags to be set. The

way in which each instruction affects the flags is described below.

To make an instruction conditional, a two-letter suffix is added to the mnemonic. The

suffixes, and their meanings, are listed below.

AL Always

An instruction with this suffix is always executed. To save having to type 'AL' after the

majority of instructions which are unconditional, the suffix may be omitted in this case.

Thus ADDAL and ADD mean the same thing: add unconditionally.

NV Never

All ARM conditions also have their inverse, so this is the inverse of always. Any

instruction with this condition will be ignored. Such instructions might be used for 'padding'

or perhaps to use up a (very) small amount of time in a program.

EQ Equal

This condition is true if the result flag Z (zero) is set. This might arise after a compare

instruction where the operands were equal, or in any data instruction which received a zero

result into the destination.

NE Not equal

This is clearly the opposite of EQ, and is true if the Z flag is cleared. If Z is set, and

instruction with the NE condition will not be executed.

VS Overflow set

This condition is true if the result flag V (overflow) is set. Add, subtract and compare

instructions affect the V flag.

VC Overflow clear

The opposite to VS.

MI Minus

Instructions with this condition only execute if the N (negative) flag is set. Such a condition

would occur when the last data operation gave a result which was negative. That is, the N

flag reflects the state of bit 31 of the result. (All data operations work on 32-bit numbers.)

PL Plus

This is the opposite to the MI condition and instructions with the PL condition will only

execute if the N flag is cleared.

The next four conditions are often used after comparisons of two unsigned numbers. If the

numbers being compared are n1 and n2, the conditions are n1>=n2, n1<n2, n1>n2 and

n1<=n2, in the order presented.

CS Carry set

This condition is true if the result flag C (carry) is set. The carry flag is affected by

arithmetic instructions such as ADD, SUB and CMP. It is also altered by operations

involving the shifting or rotation of operands (data manipulation instructions).

When used after a compare instruction, CS may be interpreted as 'higher or same', where

the operands are treated as unsigned 32-bit numbers. For example, if the left hand operand

of CMP was 5 and the right hand operand was 2, the carry would be set. You can

use HS instead of CS for this condition.

CC Carry clear

This is the inverse condition to CS. After a compare, the CC condition may be interpreted

as meaning 'lower than', where the operands are again treated as unsigned numbers. An

synonym for CC is LO.

HI Higher

This condition is true if the C flag is set and the Z flag is false. After a compare or subtract,

this combination may be interpreted as the left hand operand being greater than the right

hand one, where the operands are treated as unsigned.

LS Lower or same

This condition is true if the C flag is cleared or the Z flag is set. After a compare or

subtract, this combination may be interpreted as the left hand operand being less than or

equal to the right hand one, where the operands are treated as unsigned.

The next four conditions have similar interpretations to the previous four, but are used

when signed numbers have been compared. The difference is that they take into account the

state of the V (overflow) flag, whereas the unsigned ones don't.

Again, the relationships between the two numbers which would cause the condition to be

true are n1>=n2, n1<n2, n1>n2, n1<=n2.

GE Greater than or equal

This is true if N is cleared and V is cleared, or N is set and V is set.

LT Less than

This is the opposite to GE and instructions with this condition are executed if N is set and

V is cleared, or N is cleared and V is set.

GT Greater than

This is the same as GE, with the addition that the Z flag must be cleared too.

LE Less than or equal

This is the same as LT, and is also true whenever the Z flag is set.

Note that although the conditions refer to signed and unsigned numbers, the operations on

the numbers are identical regardless of the type. The only things that change are the flags

used to determine whether instructions are to be obeyed or not.

The flags may be set and cleared explicitly by performing operations directly on R15,

where they are stored.

3.2 Group one - data manipulation

This group contains the instructions which do most of the manipulation of data in ARM

programs. The other groups are concerned with moving data between the processor and

memory, or changing the flow of control.

The group comprises sixteen distinct instructions. All have a very similar format with

respect to the operands they take and the 'optional extras'. We shall describe them

generically using ADD, then give the detailed operation of each type.

Assembler format

ADD has the following format:

ADD{cond}{S} <dest>, <lhs>, <rhs>

The parts in curly brackets are optional. Cond is one of the two-letter condition codes listed

above. If it is omitted, the 'always' condition AL is assumed. The S, if present, causes the

instruction to affect the result flags. If there is no S, none of the flags will be changed. For

example, if an instruction ADDS É yields a result which is negative, then the N flag will be

set. However, just ADD É will not alter N (or any other flag) regardless of the result.

After the mnemonic are the three operands. <dest> is the destination, and is the register

number where the result of the ADD is to be stored. Although the assembler is happy with

actual numbers here, e.g. 0 for R0, it recognises R0, R1, R2 etc. to stand for the register

numbers. In addition, you can define a name for a register and use that instead. For

example, in BBC BASIC you could say:-

iac = 0

where iac stands for, say, integer accumulator. Then this can be used in an instruction:-

ADD iac, iac, #1

The second operand is the left hand side of the operation. In general, the group one

instructions act on two values to provide the result. These are referred to as the left and

right hand sides, implying that the operation determined by the mnemonic would be written

between them in mathematics. For example, the instruction:

ADD R0, R1, R2

has R1 and R2 as its left and right hand sides, and R0 as the result. This is analogous to an

assignment such as R0=R1+R2 in BASIC, so the operands are sometimes said to be in

'assignment order'.

The <lhs> operand is always a register number, like the destination. The <rhs> may either

be a register, or an immediate operand, or a shifted or rotated register. It is the versatile

form that the right hand side may take which gives much of the power to these instructions.

If the <rhs> is a simple register number, we obtain instructions such as the

first ADD example above. In this case, the contents of R1 and R2 are added (as signed, 32-

bit numbers) and the result stored in R0. As there is no condition after the instruction,

the ADD instruction will always be executed. Also, because there was no S, the result flags

would not be affected.

The three examples below all perform the same ADD operation (if the condition is true):

ADDNE R0, R0, R2

ADDS R0, R0, R2

ADDNES R0, R0, R2

They all add R2 to R0. The first has a NE condition, so the instruction will only be

executed if the Z flag is cleared. If Z is set when the instruction is encountered, it is

ignored. The second one is unconditional, but has the S option. Thus the N, Z, V and C

flags will be altered to reflect the result. The last example has the condition and the S, so if

Z is cleared, the ADD will occur and the flags set accordingly. If Z is set, the ADD will be

skipped and the flags remain unaltered.

Immediate operands

Immediate operands are written as a # followed by a number. For example, to increment

R0, we would use:

ADD R0, R0, #1

Now, as we know, an ARM instruction has 32 bits in which to encode the instruction type,

condition, operands etc. In group one instructions there are twelve bits available to encode

immediate operands. Twelve bits of binary can represent numbers in the range 0..4095, or -

2048..+2047 if we treat them as signed.

The designers of the ARM decided not to use the 12 bits available to them for immediate

operands in the obvious way just mentioned. Remember that some of the status bits are

stored in bits 26..31 of R15. If we wanted to store an immediate value there using a group

one instruction, there's no way we could using the straightforward twelve-bit number

approach.

To get around this and related problems, the immediate operand is split into two fields,

called the position (the top four bits) and the value (stored in the lower eight bits). The

value is an eight bit number representing 256 possible combinations. The position is a four

bit field which determines where in the 32-bit word the value lies. Below is a diagram

showing how the sixteen values of the position determine where the value goes. The bits of

the value part are shown as 0, 1, 2 etc.

The way of describing this succinctly is to say that the value is rotated by 2*position bits to

the right within the 32-bit word. As you can see from the diagram, when position=&03, all

of the status bits in R15 can be reached.

b31 b0 Pos

........................76543210 &00

10........................765432 &01

3210........................7654 &02

543210........................76 &02

76543210........................ &04

..76543210...................... &05

....76543210.................... &06

......76543210.................. &07

........76543210................ &08

..........76543210.............. &09

............76543210............ &0A

..............76543210.......... &0B

................76543210........ &0C

..................76543210...... &0D

....................76543210.... &0E

......................76543210.. &0F

The sixteen immediate shift positions

When using immediate operands, you don't have to specify the number in terms of position

and value. You just give the number you want, and the assembler tries to generate the

appropriate twelve-bit field. If you specify a value which can't be generated, such as &101

(which would require a nine-bit value), an error is generated. The ADD instruction below

adds 65536 (&1000) to R0:

ADD R0, R0, #&1000

To get this number, the assembler might use a position value of 8 and value of 1, though

other combinations could also be used.

Shifted operands

If the <rhs> operand is a register, it may be manipulated in various ways before it is used in

the instruction. The contents of the register aren't altered, just the value given to the ALU,

as applied to this operation (unless the same register is also used as the result, of course).

The particular operations that may be performed on the <rhs> are various types of shifting

and rotation. The number of bits by which the register is shifted or rotated may be given as

an immediate number, or specified in yet another register.

Shifts and rotates are specified as left or right, logical or arithmetic. A left shift is one

where the bits, as written on the page, are moved by one or more bits to the left, i.e. towards

the more significant end. Zero-valued bits are shifted in at the right and the bits at the left

are lost, except for the final bit to be shifted out, which is stored in the carry flag.

Left shifts by n bits effectively multiply the number by 2
n
, assuming that no significant bits

are 'lost' at the top end.

A right shift is in the opposite direction, the bits moving from the more significant end to

the lower end, or from left to right on the page. Again the bits shifted out are lost, except

for the last one which is put into the carry. If the right shift is logical then zeros are shifted

into the left end. In arithmetic shifts, a copy of bit 31 (i.e. the sign bit) is shifted in.

Right arithmetic shifts by n bits effectively divide the number by 2
n
, rounding towards

minus infinity (like the BASIC INT function).

A rotate is like a shift except that the bits shifted in to the left (right) end are those which

are coming out of the right (left) end.

Here are the types of shifts and rotates which may be used:

LSL #n Logical shift left immediate

n is the number of bit positions by which the value is shifted. It has the value 0..31.

An LSL by one bit may be pictured as below:

After n shifts, n zero bits have been shifted in on the right and the carry is set to bit 32-n of

the original word.

Note that if there is no shift specified after the <rhs> register value, LSLÊ#0 is used, which

has no effect at all.

ASL #n Arithmetic shift left immediate

This is a synonym for LSL #n and has an identical effect.

LSR #n Logical shift right immediate

n is the number of bit positions by which the value is shifted. It has the value 1...32.

An LSR by one bit is shown below:

After n of these, n zero bits have been shifted in on the left, and the carry flag is set to bit n-

1 of the original word.

ASR #n Arithmetic shift right immediate

n is the number of bit positions by which the value is shifted. It has the value 1..32.

An ASR by one bit is shown below:

http://www.peter-cockerell.net/aalp/html/images/fig3-1-hi.jpg
http://www.peter-cockerell.net/aalp/html/images/fig3-2-hi.jpg
http://www.peter-cockerell.net/aalp/html/images/fig3-3-hi.jpg

If ' sign' is the original value of bit 31 then after n shifts, n 'sign' bits have been shifted in on

the left, and the carry flag is set to bit n-1 of the original word.

ROR #n Rotate right immediate

n is the number of bit positions to rotate in the range 1..31. A rotate right by one bit is

shown below:

After n of these rotates, the old bit n is in the bit 0 position; the old bit (n-1) is in bit 31 and

in the carry flag.

Note that a rotate left by n positions is the same as a rotate right by (32-n). Also note that

there is no rotate right by 32 bits. The instruction code which would do this has been

reserved for rotate right with extend (see below).

RRX rotate right one bit with extend

This special case of rotate right has a slightly different effect from the usual rotates. There

is no count; it always rotates by one bit only. The pictorial representation of RRX is:

The old bit 0 is shifted into the carry. The old content of the carry is shifted into bit 31.

Note that there is no equivalent RLX rotate. However, the same effect may be obtained

using the instruction:

http://www.peter-cockerell.net/aalp/html/images/fig3-4-hi.jpg
http://www.peter-cockerell.net/aalp/html/images/fig3-5-hi.jpg

ADCS R0, R0, R0

PC relative addressing

The assembler will accept a special form of pre-indexed address in the LDR instruction,

which is simply:

LDR <dest>,<expression>

Where <expression> yields an address. In this case, the instruction generated will use R15

(i.e. the program counter) as the base register, and calculate the immediate offset

automatically. If the address given is not in the correct range (-4095 to +4095) from the

instruction, an error is given.

An example of this form of instruction is:

LDR R0, default

(We assume that default is a label in the program. Labels are described more fully in the

next chapter, but for now suffice is to say that they are set to the address of the point in the

program where they are defined.)

As the assembler knows the value of the PC when the program is executed, it can calculate

the immediate offset required to access the location default. This must be within the range -

4095 to +4095 of course. This form of addressing is used frequently to access constants

embedded in the program.

Software interrupt

The final group is the most simple, and the most complex. It is very simple because it

contains just one instruction, SWI, whose assembler format has absolutely no variants or

options.

http://www.peter-cockerell.net/aalp/html/images/fig3-6-hi.jpg

The general form of SWI is:

SWI {cond} <expression>

It is complex because depending on <expression>, SWI will perform tasks as disparate as

displaying characters on the screen, setting the auto-repeat speed of the keyboard and

loading a file from the disc.

SWI is the user's access to the operating system of the computer. When a SWI is executed,

the CPU enters supervisor mode, saves the return address in R14_SVC, and jumps to

location 8. From here, the operating system takes over. The way in which the SWI is used

depends on <expression>. This is encoded as a 24-bit field in the instruction. The operating

system can examine the instruction using, for example:.

STMFD R13!,{R0-R12} ;Save user's registers

 BIC R14, R14,#&FC000003 ;Mask status bits

 LDR R13,[R14,#-4] ;Load SWI instruction

To find out what <expression> is.

Since the interpretation of <expression> depends entirely on the system in which the

program is executing, we cannot say much more about SWI here. However, as practical

programs need to use operating system functions, the examples in later chapters will use a

'standard' set that you could reasonably expect. Two of the most important ones are

called WriteC and ReadC. The former sends the character in the bottom byte of R0 to the

screen, and the latter reads a character from the keyboard and returns it in the bottom byte

of R0.

Note: The code in the example above will be executed in SVC mode, so the accesses to

R13 and R14 are actually to R13_SVC and R14_SVC. Thus the user's versions of these

registers do not have to be saved.

3.7 Instruction timings

Instructions which are skipped due to the condition failing always execute in 1s cycle.

Group one

MOV, ADD etc. 1 s-cycle. If <rhs> contains a shift count in a register (i.e. not an

immediate shift), add 1 s-cycle. If <dest> is R15, add 1 s + 1 n-cycle.

Group one A

MUL, MLA. 1 s + 16 i- cycles worst-case.

Group two

LDR. 1 s + 1 n + 1 i-cycle. If <dest> is R15, add 1 s + 1n-cycle.

STR. 2 n-cycles.

Group three

LDM. (regs-1) s + 1 n + 1 i-cycle. Regs is the number of registers loaded. Add 1 s + 1 n-

cycles if R15 is loaded.

STM. 2 n + (regs-1) s-cycles.

Group four

B, BL. 2 s + 1 n-cycles.

Group five

SWI. 2 s + 1 n-cycles.

 R0 to R12 are the general-purpose registers.

 R13 is reserved for the programmer to use it as the stack pointer.

 R14 is the link register which stores a subroutine return address.

 R15 contains the program counter and is accessible by the programmer.

 Conditonion code flags in CPSR:

 N - Negative or less than flag

 Z - Zero flag

 C - Carry or bowrrow or extendedflag

 V - Overflow flag

 The least-significant 8-bit of the CPSR are the control bits of the system.

 The other bits are reserved.

ARM addressing Modes

There are different ways to specify the address of the operands for any given operations

such as load, add or branch. The different ways of determining the address of the operands

are called addressing modes. In this lab, we are going to explore different addressing modes

of ARM processor and learn how all instructions can fit into a single word (32 bits).

Literal Addressing

Register Indirect Addressing

Register indirect addressing means that the location of an operand is held in a register. It is

also called indexed addressing or base addressing.

Register indirect addressing mode requires three read operations to access an operand. It is

very important because the content of the register containing the pointer to the operand can

be modified at runtime. Therefore, the address is a vaiable that allows the access to the data

structure like arrays.

 Read the instruction to find the pointer register

 Read the pointer register to find the oprand address

 Read memory at the operand address to find the operand

Register Indirect Addressing with an Offset

ARM supports a memory-addressing mode where the effective address of an operand is

computed by adding the content of a register and a literal offset coded into load/store

instruction. For example,

 Instruction Effective Address

 LDR R0, [R1, #20] R1 + 20 ; loads R0 with the word pointed at by

R1+20

ARM's Autoindexing Pre-indexed Addressing Mode

This is used to facilitate the reading of sequential data in structures such as arrays, tables,

and vectors. A pointer register is used to hold the base address. An offset can be added to

achieve the effective address. For example,

 Instruction Effective Address

 LDR R0, [R1, #4]! R1 + 4 ; loads R0 with the word pointed at by R1+4

 ; then update the pointer by adding 4 to

R1

ARM's Auto indexing Post-indexing Addressing Mode

This is similar to the above, but it first accesses the operand at the location pointed by the

base register, then increments the base register. For example,

 Instruction Effective Address

 LDR R0, [R1], #4 R1 ; loads R0 with the word pointed at by R1

 ; then update the pointer by adding 4 to

R1

Program Counter Relative (PC Relative) Addressing Mode

Register R15 is the program counter. If you use R15 as a pointer register to access operand,

the resulting addressing mode is called PC relative addressing. The operand is specified

with respect to the current code location. Please look at this example,

 Instruction Effective Address

 LDR R0, [R15, #24] R15 + 24; loads R0 with the word pointed at by R1+24

ARM's Load and Store Encoding Format

The following picture illustrates the encoding format of the ARM's load and store

instructions, which is included in the lab material for your reference. Memory access

operations have a conditional execution field in bit 31, 03, 29, and 28. The load and store

instructions can be conditionally executed depending on a condition specified in the

instruction. Now look at the following examples:

 CMP R1, R2

 LDREQ R3, [R4]

 LDRNE R3, [R5]

Encoding Format of ARM's load and store instructions

UNITIV –PIC CONTROLLER

Salient features of PIC 16F877A Microcontroller

High-Performance RISC CPU:

• Only 35 single-word instructions to learn

• All single-cycle instructions except for program branches, which are two-cycle

• Operating speed: DC – 20 MHz clock input DC – 200 ns instruction cycle

• Up to 8K x 14 words of Flash Program Memory, Up to 368 x 8 bytes of Data Memory

(RAM),

 Up to 256 x 8 bytes of EEPROM Data Memory

• Pinout compatible to other 28-pin or 40/44-pin PIC16CXXX and PIC16FXXX

microcontrollers

Peripheral Features:

• Timer0: 8-bit timer/counter with 8-bit prescaler

• Timer1: 16-bit timer/counter with prescaler, can be incremented during Sleep via

external crystal/clock

• Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler

• Two Capture, Compare, PWM modules

- Capture is 16-bit, max. resolution is 12.5 ns

- Compare is 16-bit, max. resolution is 200 ns

- PWM max. resolution is 10-bit

• Synchronous Serial Port (SSP) with SPI™ (Master mode) and I2C™ (Master/Slave)

• Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit

address

Detection

• Parallel Slave Port (PSP) – 8 bits wide with external RD, WR and CS controls (40/44-pin

only)

• Brown-out detection circuitry for Brown-out Reset (BOR)

Analog Features:

• 10-bit, up to 8-channel Analog-to-Digital Converter (A/D)

• Brown-out Reset (BOR)

• Analog Comparator module with: - Two analog comparators - Programmable on-chip

voltage reference (VREF) module

- Programmable input multiplexing from device inputs and internal voltage

reference - Comparator outputs are externally accessible

Special Microcontroller Features:

• 100,000 erase/write cycle Enhanced Flash program memory typical• 1,000,000

erase/write

Cycle Data EEPROM

Memory typical

• Data EEPROM Retention > 40 years

• Self-reprogrammable under software control

• In-Circuit Serial Programming™ (ICSP™) via two pins

• Single-supply 5V In-Circuit Serial Programming

• Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation •

Programmable code protection

• Power saving Sleep mode • Selectable oscillator options

• In-Circuit Debug (ICD) via two pins

CMOS Technology:

• Low-power, high-speed Flash/EEPROM technology

• Fully static design

• Wide operating voltage range (2.0V to 5.5V)

• Commercial and Industrial temperature ranges

• Low-power consumption

 PIC 16F877A Pin Diagram and Description

PIC 16F877A Block Diagram (Architecture)

Memory organization

The program memory and data memory have separate buses so that concurrent access can occur

Program memory map

The PIC16F87XA devices have a 13-bit program counter capable of addressing an 8K word x 14

bit.program memory space. The PIC16F876A/877Adevices have 8K words x 14 bits of Flash

programmemory. The Reset vector is at 0000h and the interrupt vector is at 0004h.

Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers

and the Special Function Registers. Bits RP1 (Status<6>) and RP0 (Status<5>) are the bank

select bits. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are

reserved for the Special Function Registers. Above the Special Function Registers are General

Purpose Registers, implemented as static RAM. All implemented banks contain Special Function

Registers.

Data eeprom and flash program memory

The data EEPROM and Flash program memory is readable and writable during normal operation

(over the full VDD range). This memory is not directly mapped in the register file space. Instead,

it is indirectly addressed through the Special Function Registers. There are six SFRs used to read

and write this memory:

• EECON1

• EECON2

• EEDATA

• EEDATH

• EEADR

• EEADRH

GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register

(FSR).

SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for

controlling the desired operation of the device. These registers are implemented as static RAM.

The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Some

examples are Status Register the Status register contains the arithmetic status of the ALU, the

Reset status and the bank select bits for data memory.

DIRECT/INDIRECT ADDRESSING

Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect

addressing.Indirect addressing is possible by using the INDF register.Any instruction using the

INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading

the INDF register itself, indirectly (FSR = 0) will read 00h. Writing to the INDF register

indirectly results in a no operation (although status bits may be affected). An effective 9-bit

address is obtained by concatenating the 8-bit FSR register and the IRP bit

I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral

features on the device. In general, when a peripheral is enabled, that pin may not be used as a

general purpose I/O pin.

PORTA and the TRISA Register

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA.

Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the

corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make

the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected

pin).Reading the PORTA register reads the status of the pins, whereas writing to it will write to

the port latch. All write operations are read-modify-write operations. Therefore, a write to a port

implies that the port pins are read; the value is modified and then written to the port data latch.

The TRISA register controls the direction of the port pins even when they are being used as

analog inputs.

Similarly for other ports : PORTB and the TRISB Register ,PORTC and the TRISC

Register, PORTD and TRISD Registers ,PORTE and TRISE Register.

TIMER0 MODULE

The Timer0 module timer/counter has the following features:

• 8-bit timer/counter

• Readable and writable

• 8-bit software programmable prescaler

• Internal or external clock select

• Interrupt on overflow from FFh to 00h

• Edge select for external clock

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and

TMR1L) which are readable and writable. Timer1 can operate in one of two modes:

• As a Timer

• As a Counter

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base

for the PWM mode of the CCP module(s). The TMR2 register is readable and writable and is

cleared on any device Reset.

CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains

a 16-bit register which can operate as a:

• 16-bit Capture register

• 16-bit Compare register

• PWM Master/Slave Duty Cycle register

CCP1 Module:

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low

byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The

special event trigger is generated by a compare match and will reset Timer1.

CCP2 Module:

Capture/Compare/PWM Register 2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low

byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. The

special event trigger is generated by a compare match and will reset Timer1 and start an A/D

conversion (if the A/D module is enabled).

Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an

event occurs on pin RC2/CCP1. An event is defined as one of the following:

• Every falling edge

• Every rising edge

• Every 4th rising edge

• Every 16th rising edge

The type of event is configured by control bits, CCP1M3:CCP1M0 (CCPxCON<3:0>).

Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1

register pair value. When a match occurs, the RC2/CCP1 pin is:

• Driven high

• Driven low

• Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0

(CCP1CON<3:0>).

PWM Mode (PWM)

In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output.

PWM BLOCK DIAGRAM

Master SSP (MSSP) Module

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for

communicating with other peripheral or microcontroller devices. These peripheral devices may

be serial EEPROMs, shift registers,display drivers, A/D converters, etc. The MSSP module can

operate in one of two modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated Circuit (I2C)

- Full Master mode

- Slave mode (with general address call)

The I2C interface supports the following modes in hardware:

• Master mode

• Multi-Master mode

• Slave mode

COMPARATOR MODULE

The comparator module contains two analog comparators.The inputs to the comparators are

multiplexed with I/O port pins RA0 through RA3, while the outputs are multiplexed to pins RA4

and RA5.

Reset

The PIC16F87XA differentiates between various kinds

of Reset:

• Power-on Reset (POR)

• MCLR Reset during normal operation

• MCLR Reset during Sleep

• WDT Reset (during normal operation)

• WDT Wake-up (during Sleep)

• Brown-out Reset (BOR)0

INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

• Byte-oriented operations

• Bit-oriented operations

• Literal and control operations.

Each PIC16 instruction is a 14-bit word divided into an opcode which specifies the instruction

type and one or more operands which further specify the operation of the instruction.

OPCODE FIELD DESCRIPTIONS

PIC16F87XA INSTRUCTION SET

UNIT-V INTERFACING CASE STUDY

Interfacing LCD with PIC Microcontroller

 16×2 Character LCD is a very basic LCD module which is commonly used in electronics

projects and products. It contains 2 rows that can display 16 characters. Each character is

displayed using 5×8 or 5×10 dot matrix. It can be easily interfaced with a

microcontroller. In this tutorial we will see how to write data to an LCD with PIC

Microcontroller using Hi-Tech C Compiler. Hi-Tech C has no built in LCD libraries so

we require the hardware knowledge of LCD to control it. Commonly used

LCD Displays uses HD44780 compliant controllers.

16×2 LCD Pin Diagram

This is the pin diagram of a 16×2 Character LCD display. As in all devices it also has two inputs

to give power Vcc and GND. Voltage at VEE determines the Contrast of the display. A 10K

potentiometer whose fixed ends are connected to Vcc, GND and variable end is connected to

VEE can be used to adjust contrast. A microcontroller needs to send two informations to operate

this LCD module, Data and Commands. Data represents the ASCII value (8 bits) of the character

to be displayed and Command determines the other operations of LCD such as position to be

displayed. Data and Commands are send through the same data lines, which are multiplexed

using the RS (Register Select) input of LCD. When it is HIGH, LCD takes it as data to be

displayed and when it is LOW, LCD takes it as a command. Data Strobe is given using E

(Enable) input of the LCD. When the E (Enable) is HIGH, LCD takes it as valid data or

command. The input signal R/W (Read or Write) determines whether data is written to or read

from the LCD. In normal cases we need only writing hence it is tied to GROUND in circuits

shown below.

https://electrosome.com/lcd-display-fundamentals/
https://electrosome.com/lcd-display-fundamentals/
https://electrosome.com/wp-content/uploads/2013/07/16x2-LCD-Pin-Diagram.jpg

The interface between this LCD and Microcontroller can be 8 bit or 4 bit and the difference

between them is in how the data or commands are send to LCD. In the 8 bit mode, 8 bit data and

commands are send through the data lines DB0 – DB7 and data strobe is given through E input

of the LCD. But 4 bit mode uses only 4 data lines. In this 8 bit data and commands are splitted

into 2 parts (4 bits each) and are sent sequentially through data lines DB4 – DB7 with its own

data strobe through E input. The idea of 4 bit communication is introduced to save pins of a

microcontroller. You may think that 4 bit mode will be slower than 8 bit. But the speed

difference is only minimal. As LCDs are slow speed devices, the tiny speed difference between

these modes is not significant. Just remember that microcontroller is operating at high speed in

the range of MHz and we are viewing LCD with our eyes. Due to Persistence of Vision of our

eyes we will not even feel the speed difference.

Hope that you got rough idea about how this LCD Module works. Actually you need to read the

datasheet of HD44780 LCD driver used in this LCD Module to write a Hi-Tech C program for

PIC. But we solved this problem by creating a header file lcd.h which includes all the commonly

used functions. Just include it and enjoy.

FUNCTIONS IN LCD.H

Lcd8_Init() & Lcd4_Init() : These functions will initialize the LCD Module connected to the

following defined pins in 8 bit and 4 bit mode respectively.

8 Bit Mode :

#define RS RB6

#define EN RB7

#define D0 RC0

#define D1 RC1

#define D2 RC2

#define D3 RC3

#define D4 RC4

#define D5 RC5

#define D6 RC6

#define D7 RC7

http://electrosheets.com/lcd-controller/hd44780u/

These connections must be defined for the working of LCD library.

Lcd8_Clear() & Lcd4_Clear() : Calling these functions will clear the LCD Display when

interfaced in 8 Bit and 4 Bit mode respectively.

Lcd8_Set_Cursor() & Lcd4_Set_Cursor() : These functions set the row and column of the cursor

on the LCD Screen. By using this we can change the position of the character being displayed by

the following functions.

Lcd8_Write_Char() & Lcd4_Write_Char() : These functions will write a character to the LCD

Screen when interfaced through 8 Bit and 4 Bit mode respectively.

Lcd8_Write_String() & Lcd4_Write_String() : These functions are used to write strings to the

LCD Screen.

Lcd8_Shift_Left() & Lcd4_Shift_Left() : These functions are used to shift the content on the

LCD Display left without changing the data in the display RAM.

Lcd8_Shift_Right() & Lcd4_Shift_Right() : Similar to above functions, these are used to shift

the content on the LCD Display right without changing the data in the display RAM.

8 Bit Mode-Circuit Diagram

Interfacing LCD with PIC Microcontroller – 8 Bit Mode

#include<htc.h>

#include<pic.h>

#define RS RB6

#define EN RB7

#define D0 RC0

#define D1 RC1

#define D2 RC2

#define D3 RC3

#define D4 RC4

#define D5 RC5

#define D6 RC6

#define D7 RC7

https://electrosome.com/wp-content/uploads/2013/07/Interfacing-LCD-with-PIC-Microcontroller-8-Bit-Mode.jpg

#define _XTAL_FREQ 8000000

#include "lcd.h"

void main()

{

 int i;

 TRISB = 0x00;

 TRISC = 0x00;

 Lcd8_Init();

 while(1)

 {

 Lcd8_Set_Cursor(1,1);

 Lcd8_Write_String("electroSome LCD Hello World");

 for(i=0;i<15;i++)

 {

 __delay_ms(1000);

 Lcd8_Shift_Left();

 }

 for(i=0;i<15;i++)

 {

 __delay_ms(1000);

 Lcd8_Shift_Right();

 }

 Lcd8_Clear();

 Lcd8_Set_Cursor(2,1);

 Lcd8_Write_Char('e');

 Lcd8_Write_Char('S');

 __delay_ms(2000);

 }

}

KEY BOARD

Matrix Keypad is a very useful and userfriendly when we want to design certain applications like

Calculator, Telephone etc. Matrix Keypad is made by arranging push button switches in rows

and columns. Just imagine, if you want to interface a 4*4 (16 keys) matrix keypad with a

microcontroller. In the straight forward way, you will need 16 pins of a microcontroller for that,

but by using a simple technique we can reduce it to 8 pins. In the matrix keypad switches are

connected in a special manner a shown in the figure below.

4×4-Matrix-Keypad

Pressed keys can be detected by Scanning. For the sake of explanation, lets assume all column

connections (Col1 – Col4) are input pins and all row connections (Row1 – Row4) are output

pins. In the normal case (not scanning) all column inputs where in LOW (GND) state. For

scanning keypad,

1. A Logic HIGH signal is given to Col1 of column inputs.

2. Then each Row output (row1 – row4) is scanned one by one. If any of the key belongs to

first column is pressed, the Logic high signal from the Col1 will pass to that row.

Through we can detect the key.

3. This process is repeated for all columns if we want to detect multiple keys.

https://electrosome.com/wp-content/uploads/2012/06/4x4-Matrix-Keypad.jpg

In this post I am explaining only about detecting one key at a time. For explaining the working I

am using a 4*4 matrix keypad and the result is displayed in a Seven Segment Display. Matrix

Keypad scanning is stopped as soon as any key press is detected and the Scanning is restarted if

we need more inputs.

Interfacing with PIC Microcontroller

Circuit Diagram

Matrix Keypad interfacing with PIC Microcontroller

Note: VDD and VSS of the pic microcontroller is not shown in the circuit diagram. VDD should

be connected to +5V and VSS to GND.

Matrix Keypad is connected to the PORTB of the PIC Microcontroller. Each column of the

Matrix Keypad is connected to RB0 – RB3 of the PIC Microcontroller, which are configured as

output pins. While each row of the Matrix Keypad is connected to RB4 – RB7 of the PIC

Microcontroller, which are configured as input pins.

Here I am using 4*4 matrix keypad, having characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, -, C, U, E, F.

‘B’ is replaced by ‘-‘ and ‘D’ is replaced by ‘U’ because Seven Segment Display is used for

displaying characters. ‘B’ will be similar to ‘8’ and ‘D’ will be similar to ‘0’ when displayed in

Seven Segment Display. For reading data for the Matrix Keypad, each column is made high and

rows are scanned as I said above.

https://electrosome.com/wp-content/uploads/2012/06/Matrix-keyboard-pic-microcontroller.png

MikroC Programming

We use the function readKeyboard() to scan the Matrix Keypad and findKey() to find the pressed

key. You can edit the function findKey() to change the character corresponds to each key of the

Matrix Keypad.

Function to Scan Keypad

char readKeyboard()

{

 unsigned int i = 0;

 for(i=0;i<4;i++)

 {

 if(i == 0)

 PORTB = 1;

 else if(i == 1)

 PORTB = 2;

 else if(i == 2)

 PORTB = 4;

 else if(i == 3)

 PORTB = 8;

 if(PORTB.F4)

 return findKey(i,0);

 if(PORTB.F5)

 return findKey(i,1);

 if(PORTB.F6)

 return findKey(i,2);

 if(PORTB.F7)

 return findKey(i,3);

 }

 return ' ';

}

This function initiates the keypad scanning and returns the character corresponds to the pressed

key when a key press is detected. It uses the function findKey() to find the character corresponds

to a particular row and column. In this function space (‘ ‘) is used as the null character, which is

returned when no key is pressed, you may change this according to your needs.

Function to Find Keys

char findKey(unsigned short a, unsigned short b)

{

 if(b == 0)

 {

 if(a == 3)

 return '0';

 else if(a == 2)

 return '1';

 else if(a == 1)

 return '2';

 else if(a == 0)

 return '3';

 }

 else if(b == 1)

 {

 if(a == 3)

 return '4';

 else if(a == 2)

 return '5';

 else if(a == 1)

 return '6';

 else if(a == 0)

 return '7';

 }

 else if(b == 2)

 {

 if(a == 3)

 return '8';

 else if(a == 2)

 return '9';

 else if(a == 1)

 return 'A';

 else if(a == 0)

 return '-';

 }

 else if(b == 3)

 {

 if(a == 3)

 return 'C';

 else if(a == 2)

 return 'U';

 else if(a == 1)

 return 'E';

 else if(a == 0)

 return 'F';

 }

}

This function returns the character corresponding to a particular row and column. You may

change characters corresponding to each key according to your need by editing this function.

Seven Segment Decoding Function

unsigned int sevenSegmentDecoder(char a)

{

 switch(a)

 {

 case '0': return 0x3F;

 case '1': return 0x06;

 case '2': return 0x5B;

 case '3': return 0x4F;

 case '4': return 0x66;

 case '5': return 0x6D;

 case '6': return 0x7D;

 case '7': return 0x07;

 case '8': return 0x7F;

 case '9': return 0x6F;

 case '0': return 0x3F;

 case 'A': return 0x77;

 case '-': return 0x40;

 case 'C': return 0x39;

 case 'U': return 0x3E;

 case 'E': return 0x79;

 case 'F': return 0x71;

 case ' ': return 0;

 }

}

This function decodes the given character to display it in Seven Segment Display.

PARALLEL AND SERIAL ADC

This chapter explores some more real-world devices such as ADCs (analog-to-digital

converters), DACs (digital-to-analog converters), and sensors. We will also explain how to

interface the 8051 to these devices. In Section 13.1, we describe analog-to-digital converter

(ADC) chips. We will study the 8-bit parallel ADC chips ADC0804, ADC0808/0809, and

ADC0848 We will also look at the serial ADC chip MAX1112. The characteristics of DAC

chips are discussed in Section 13.2. In Section 13.3, we show the interfacing of sensors and

discuss the issue of signal conditioning.

 ADC devices
Analog-to-digital converters are among the most widely used devices for data acquisition.

Digital computers use binary (discrete) values, but in the physical world everything is analog

(continuous). Temperature, pressure (wind or liquid), humidity, and velocity are a few examples

of physical quantities that we deal with every day. A physical quantity is converted to electrical

(voltage, current) signals using a device called a transducer. Transducers are also referred to

as sensors. Sensors for temperature, velocity, pressure, light, and many other natural quantities

produce an output that is voltage (or current). Therefore, we need an analog-to-digital converter

to translate the analog signals to digital numbers so that the microcontroller can read and process

them. An ADC has n-bit resolution where n can be 8, 10, 12, 16 or even 24 bits.

The higher-resolution ADC provides a smaller step size, where step size is the smallest change

that can be discerned by an ADC. This is shown in Table 13-1. In this chapter we examine

several 8-bit ADC chips. In addition to resolution, conversion time is another major factor in

judging an ADC. Conversion time is defined as the time it takes the ADC to convert the analog

input to a digital (binary) number. The ADC chips are either parallel or serial. In parallel ADC,

we have 8 or more pins dedicated to bringing out the binary data, but in serial ADC we have only

one pin for data out. Serial ADCs are discussed at the end of this section.

Resolution vs. Step Size for ADC

Notes: Vcc = 5 V

Step size (resolution) is the smallest change that can be discerned by an ADC.

ADC0804 chip

The ADC0804 1C is an 8-bit parallel ADC in the family of the ADC0800 series from National

Semiconductor (www.national.com). It is also available from many other manufacturers. It

works with +5 volts and has a resolution of 8 bits. In the ADC0804, the conversion time varies

depending on the clocking signals applied to the CLK IN pin, but it cannot be faster than 110 p.s.

The following is the ADC0804 pin description.

CS

Chip select is an active low input used to activate the ADC0804 chip. To access the ADC0804,

this pin must be low.

RD (read)

This is an input signal and is active low. The ADC converts the analog input to its binary

equivalent and holds it in an internal register. RD is used to get the converted data out of the

ADC0804 chip. When CS = 0, if a high-to-low pulse is applied to the RD pin, the 8-bit digital

output shows up at the DO – D7 data pins. The RD pin is also referred to as output enable (OE).

WR (write; a better name might be “start conversion”)

This is an active low input used to inform the ADC0804 to start the conversion process. If CS =

0 when WR makes a low-to-high

transition,

ADC0804 Chip (testing ADC0804 in free running mode)

Amount of time it takes to convert varies depending on the CLK IN and CLK R values explained

below. When the data conversion is complete, the INTR pin is forced low by the ADC0804.

CLK IN and CLK R
CLK IN is an input pin connected to an external clock source when an external clock is used for

timing. However, the 804 has an internal clock generator. To use the internal clock generator

(also called self-clocking) of the ADC0804, the CLK IN and CLK R pins are connected to a

capacitor and a resistor, as shown in Figure 13-1. In that case the clock frequency is determined

by the equation:

Typical values are R = 10K ohms and C = 150 pF.

Substituting in the above equation, we get/= 606 kHz. In that case, the conversion time is 110 us.

INTR (interrupt; a better name might be “end of conversion”)

This is an output pin and is active low. It is a normally high pin and when the conversion is

finished, it goes low to signal the CPU that the converted data is ready to be picked up. After

INTR goes low, we make CS = 0 and send a high-to-low pulse to the RD pin to get the data out

of the ADC0804 chip.

Vin (+) and Vin (-)

These are the differential analog inputs where Vjn = Vjn (+) – Vjn (-). Often the Vjn (-) pin is

connected to ground and the Vjn (+) pin is used as the analog input to be converted to digital.

Vcc
This is the +5 volt power supply. It is also used as a reference voltage when the Vref/2 input (pin

9) is open (not connected). This is discussed next.

Vref/2

Pin 9 is an input voltage used for the reference voltage. If this pin is open (not connected), the

analog input voltage for the ADC0804 is in the range of 0 to 5 volts (the same as the Vcc pin).

However, there are many applications where the analog input applied to Vinneeds to be other

than the 0 to +5 V range. Vref12is used to implement analog input voltages other than 0 to 5 V.

For example, if the analog input range needs to be 0 to 4 volts, Vrej/2 is connected to 2 volts.

Notes: Vcc = 5 V

* When not connected (open), Vret/2 is measured at 2.5 volts for Vcc = 5 V.

Step Size (resolution) is the smallest change that can be discerned by an ADC.

DO-D7

DO – D7 (D7 is the MSB) are the digital data output pins since ADC0804 is a parallel ADC

chip. These are tri-state buffered and the converted data is accessed only when CS = 0 and RD is

forced low. To calculate the output voltage, use the following formula.

D =
Vin

out
step size

Where Dout = digital data output (in decimal), Vin = analog input voltage, and step size

(resolution) is the smallest change, which is (2 x Vref/2)/256 for ADC0804.

Analog ground and digital ground

These are the input pins providing the ground for both the analog signal and the digital signal.

Analog ground is connected to the ground of the analog Vin while digital ground is connected to

the ground of the Vcc pin. The reason that we have two ground pins is to isolate the analog

Vin signal from transient voltages caused by digital switching of the output DO – D7. Such

isolation contributes to the accuracy of the digital data output. In our discussion, both are

connected to the same ground; however, in the real world of data acquisition the analog and

digital grounds are handled separately.

From this discussion we conclude that the following steps must be followed for data conversion

by the ADC0804 chip.

Read and Write Timing for ADC0804

Make CS = 0 and send a low-to-high pulse to pin WR to start the conversion.

Keep monitoring the INTR pin. If INTR is low, the conversion is finished and

we can go to the next step. If INTR is high, keep polling until it goes low.

After the INTR has become low, we make CS = 0 and send a high-to-low pulse

to the RD pin to get the data out of the ADC0804 1C chip.

INTERFACING OF STEPPER MOTOR

A stepper motor is a type of DC motor that rotates in steps. When electrical signal is applied to

it, the motor rotates in steps and the speed of rotation depends on the rate at which the electrical

signals are applied and the direction of rotation is dependent on the pattern of pulses that is

followed.

A stepper motor is made up of a rotor, which is normally a permanent magnet and it is, as the

name suggests the rotating component of the motor. A stator is another part which is in the form

of winding. In the diagram below, the center is the rotor which is surrounded by the stator

winding. This is called as four phase winding.

https://www.electrical4u.com/stepper-motor-drive/
https://www.electrical4u.com/dc-motor-or-direct-current-motor/

Working of Stepper Motor

The centre tap on the stator winding allows the current in the coil to change direction when the

winding are grounded. The magnetic property of the stator changes and it will selectively attract

and repel the rotor, thereby resulting in a stepping motion for the motor.

Stepping Sequence

In order to get correct motion of the motor, a stepping sequence has to be followed. This

stepping sequence gives the voltage that must be applied to the stator phase. Normally a 4 step

sequence is followed. When the sequence is followed from step 1 to 4, we get a clock wise

rotation and when it is followed from step 4 to 1, we get a counter clockwise rotation.

Step No A A B B

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1

Interfacing Diagram

The diagram below shows the interfacing of stepper motor to a micro-controller. This is

general diagram and can be applied to any micro-controller family like PIC micro-controller,

AVR or 8051 micro-controller.

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/voltage-or-electric-potential-difference/

Since, the

micro-controller cannot provide enough current to run the motor, a driver like a ULN2003 is

used to drive the motor. Similarly, individual transistors or any other driver ICcan also be used to

drive the motor. See to it that if required, the external pull up resistors is connected to pins

depending on the micro-controller you use. The motor must never be directly connected to the

controller pins. The motor voltage depends on the size of the motor.

A typical 4 phase uni-polar stepper motor has 5 terminals. 4 phase terminals and one common

terminal of the center tap that is connected to ground.

The programming algorithm for continuous rotation in clockwise mode is given below-

1. Initialize the port pins used for the motor as outputs

2. Write a common delay program of say 500 ms

3. Output first sequence-0 × 09 on the pins

4. Call delay function

5. Output second sequence-0 × 0 c on the pins

6. Call delay function

7. Output third sequence-0 × 06 on the pins

8. Call delay function

9. Output fourth sequence-0 × 03 on the pins

10. Call delay function

11. Go to step 3

Step Angle

The number of steps required to complete one full rotation depends on the step angle of the

stepper motor. The step angle can vary from 0.72 degrees to 15 degrees per step. Depending on

that 500 to 24 steps may be required to complete one rotation. In position control applications the

selection on motor should be based on the minimum degree of rotation that is required per step.

https://www.electrical4u.com/integrated-circuits-types-of-ic/
https://www.electrical4u.com/types-of-resistor-carbon-composition-and-wire-wound-resistor/

Half Stepping

Stepper motors can be used at half the actual step angle. This is called half stepping. Suppose a

motor is rated for 15 degrees per step, then it can be programmed in such a way that it rotates at

7.5 degrees per step by applying a special half stepping sequence to it.

Step No A A B B

1 1 0 0 1

2 1 0 0 0

3 1 1 0 0

4 0 1 0 0

5 0 1 1 0

6 0 0 1 0

7 0 0 1 1

8 0 0 0 1

C Code for 8051 Micro-controller

#include

#define out P1 //motor connected on Port 1 lower

#define step 50 //one revolution for 1.8 degree motor

unsigned char i;

void delay (unsigned char k);

void main()

{

for(i = 0; i<="" br="" style="margin: 0px; padding: 0px;"> {

out=0x09;

delay();

out=0x0c;

delay();

out=0x06;

delay();

out=0x03();

delay();

}

void delay(unsigned char k)

{

unsigned int j;

for(;k>>0;k--)

{

for(j = 0; j<<40000; j++);

}

